CHEM 116
 Unit 4, Lecture 2
 Numerical Methods and Statistics

February 13, 2018

Companion Reading

Bulmer Chapter 5

1 Expected Values

The expected value of a samlpe x is

$$
\begin{equation*}
\mathrm{E}[\mathrm{X}]=\sum_{\mathcal{Q}} \mathrm{P}(\mathrm{X}=\mathrm{x}) \mathrm{x} \tag{1}
\end{equation*}
$$

An expected value is analagous to a mean, except you don't add data points. You add the elements in your sample space, weighted by their probability. Be careful not to be confused: the expected value is not the most likely outcome. The most likely outcome is the x which maximizes $P(x)$, written as:

$$
\begin{equation*}
\underset{x}{\operatorname{argmax}} P(x) \tag{2}
\end{equation*}
$$

Think of an expected value as a measure of the center point of the sample space.

1.1 Die Roll Example

Consider a fair die example, where d is an element in our sample space. Our sample space is one through six and the probability of a sample occuring is $1 / 6$.

$$
\begin{gathered}
E[D]=\frac{1}{6} \times 1+\frac{1}{6} \times 2+\frac{1}{6} \times 3 \ldots \\
E[D]=\frac{1}{6} \times 21=3.5
\end{gathered}
$$

Notice that the expected value is NOT an element of the sample space.

1.2 Unfair Die Example

Now consider our unfair die, where

$$
P(D=d)=\frac{d}{21}
$$

so for example, the probability of rolling a 4 is $4 / 21$.

$$
\mathrm{E}[\mathrm{D}]=\sum_{1, \ldots, 6} \frac{\mathrm{~d}}{21} \times \mathrm{d}=\frac{91}{21}
$$

2 Expected Value of a Random Variable

To calculate the expected value of a random variable S, use:

$$
\begin{equation*}
\mathrm{E}[\mathrm{~S}]=\sum_{\mathcal{Q}} \mathrm{P}(\mathrm{X}=\mathrm{x}) \mathrm{S}(\mathrm{x}) \tag{3}
\end{equation*}
$$

Remember that the random variable S is defined by some $S(x)$ function, whose input is an element in the sample space and has an output of some real number.

2.1 Expected Value for Sum of 2 Dice

Consider the product sample space of two dice: $Q_{2}=Q \otimes Q$, where Q is $1, \ldots, 6$. Example of elements of this sample space are rolling a 2 for the first die and a 4 for the second die: $(2,4)$. There are 36 elements in the sample space and we'll take the probability of each to be equivalent. This gives:

$$
P(X=x)=P\left(X=\left(x_{1}, x_{2}\right)\right)=\frac{1}{36}
$$

Define S as our random variable representing the sum of the two dice.

$$
S(x)=S\left(\left(x_{1}, x_{2}\right)\right)=x_{1}+x_{2}
$$

Now we can plug these into our expected value equation:

$$
\begin{gathered}
\mathrm{E}[\mathrm{~S}]=\sum_{\mathrm{Q}} \mathrm{P}(\mathrm{X}=\mathrm{x}) \mathrm{S}(\mathrm{x})=\sum_{\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right) \in \mathrm{Q}_{2}} \frac{1}{36} \mathrm{~S}\left(\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right) \\
=\frac{1}{36} \times(1+1)+\frac{1}{36} \times(1+2)+\frac{1}{36} \times(1+3)+\ldots+\frac{1}{36} \times(6+6)
\end{gathered}
$$

To calculate the answer, we need to sum all 36 possible dice rolls together. That turns out to be 252 . So we have:

$$
\mathrm{E}[\mathrm{~S}]=\frac{252}{36}=7
$$

2.2 Expected Value for Sum of 2 Dice - Alternate

Another way to solve this problem is to DEFINE our sample space to be the possible sums. Then $Q=$ $\{2,3, \ldots, 12\}$. Our correponding probability is going to be the number of permutations to roll the sum divided by some normalizing constant. For example, the probability of rolling a 6 is $5 / \mathrm{Z}$, where Z is some constant to make sure our probabilities sum to 1 . The 5 comes from the number of ways to roll a 6 : $(1,5),(2,4),(3,3),(4,2),(5,1)$. I'm calling these permutations because $(1,5)$ and $(5,1)$ are both counted. Now we to find Z :

$$
\begin{gathered}
Z=\underbrace{1}_{\text {permutations to roll a } 2}+\underbrace{2}_{\text {permutations to roll a } 3}, \ldots, \underbrace{1}_{\text {permutations to roll a } 12} \\
Z=\underbrace{1}_{3}+\underbrace{3}_{4}+\underbrace{4}_{5}+\underbrace{5}_{6}+\underbrace{6}_{7}+\underbrace{5}_{8}+\underbrace{4}_{9}+\underbrace{3}_{10}+\underbrace{2}_{11}+\underbrace{1}_{12}=36
\end{gathered}
$$

where the underbraces indicate which dice roll sum each term corresponds to. Doing this work also reveals an equation for the probability:

$$
P(S=s)=\frac{6-|s-7|}{36}
$$

Finally, we are ready to utilize the expected value equation:

$$
\begin{gathered}
\mathrm{E}[\mathrm{~S}]=\sum_{\mathcal{Q}} \mathrm{P}(\mathrm{~S}=\mathrm{s}) \mathrm{s}=\sum_{2, \ldots, 12} \frac{6-|\mathrm{s}-7|}{36} \times \mathrm{s} \\
=\frac{1 \times 2}{36}+\frac{2 \times 3}{36}+\frac{3 \times 4}{36}+\ldots+\frac{1 \times 12}{36} \\
=\frac{252}{36}=7
\end{gathered}
$$

Thus we've arrived at the same answer.

2.3 Continuous Expected Value

$$
\begin{equation*}
\mathrm{E}[\mathrm{X}]=\int_{\mathcal{X}} \mathrm{xp}(\mathrm{x}) \mathrm{dx} \tag{4}
\end{equation*}
$$

2.4 Continuous Example

$$
p^{\prime}(x) \propto x, Q=[0,5]
$$

First, we must normalize it:

$$
\begin{gathered}
\int_{0}^{5} x d x=\frac{25}{2} \\
p(x)=\frac{2 x}{25} \\
\int_{0}^{5} x \times \frac{2 x}{25}=\frac{2 \times 125}{25 \times 3}=\frac{10}{3}
\end{gathered}
$$

2.5 Conditional Expectation Value

$$
\begin{equation*}
\mathrm{E}(X \mid Y=y)=\sum_{\mathcal{X}} \mathrm{P}(X=x \mid Y=y) x \tag{5}
\end{equation*}
$$

2.6 Die Roll Example

Our random variable X is the observation, and $Y=0$ if the observation is odd and $Y=1$ if the observation is even.

$$
\mathrm{E}(X \mid Y=0)=\frac{1}{3} \times 1+\frac{1}{3} \times 3+\frac{1}{3} \times 5=3
$$

Expected value gives the center of a random variable or probability distribution.

3 Variance

Variance gives the average deviation from that center. To make sure variation above and below the center contributes, it is the expected squared distance from the expected value:

$$
\begin{equation*}
\operatorname{Var}(X)=\mathrm{E}\left[(\mathrm{E}[\mathrm{X}]-\mathrm{X})^{2}\right]=\mathrm{E}\left[\mathrm{X}^{2}\right]-\mathrm{E}[\mathrm{X}]^{2} \tag{6}
\end{equation*}
$$

3.1 Die Roll Example

We already know $\mathrm{E}[\mathrm{X}]=21 / 6=3.5$. To find $\mathrm{E}\left[\mathrm{D}^{2}\right]$, we can use our random variable expectation equation. Take F to be our random variable deinfed by $F(x)=x^{2}$:

$$
\begin{gathered}
\mathrm{E}\left[\mathrm{D}^{2}\right]=\mathrm{E}[\mathrm{~F}]=\sum_{\mathrm{Q}} \mathrm{P}(\mathrm{x}) \mathrm{x}^{2}= \\
=\frac{1}{6} \times 1^{2}+\frac{1}{6} \times 2^{2}+\frac{1}{6} \times 3^{2} \ldots \\
=\frac{91}{6} \\
\operatorname{Var}(D)=\frac{91}{6}-\frac{21^{2}}{6^{2}}=\frac{35}{12}=2.92
\end{gathered}
$$

