{ "cells": [ { "cell_type": "markdown", "id": "63604ef2", "metadata": {}, "source": [ "# Custom Symmetry Group Example" ] }, { "cell_type": "code", "execution_count": null, "id": "ff87f25d", "metadata": {}, "outputs": [], "source": [ "import symd\n", "import matplotlib.pyplot as plt\n", "import numpy as np" ] }, { "cell_type": "markdown", "id": "246c1078", "metadata": {}, "source": [ "### Make custom group\n", "\n", "Rotational group with reflection boundary conditions. Asymmetric unit is just a guess - not actually correct, so we may have overlapping particles and need to re-run the simulation." ] }, { "cell_type": "code", "execution_count": null, "id": "4bdbb677", "metadata": {}, "outputs": [], "source": [ "rot = 7\n", "genpos = []\n", "for ri in range(rot):\n", " c = np.round(np.cos(ri * np.pi * 2 / rot), 4)\n", " s = np.round(np.sin(ri * np.pi * 2 / rot), 4)\n", " # convert numbers to affine notation\n", " genpos.append(\n", " f\"{c}x {-s:+}y {-0.5 * c + 0.5 * s + 0.5:+},{s}x {c:+}y {-0.5 * s - 0.5 * c + 0.5:+}\"\n", " )\n", "specpos = [symd.Group(\"Oblique\", [\"1/2, 1/2\"], specpos=[])]\n", "asymm = f\"1/2≤x≤1.0;1/2≤y≤1.0\"\n", "my_group = symd.Group(\"Oblique\", genpos, specpos, \"quasi\", asymm)\n", "print(my_group)" ] }, { "cell_type": "markdown", "id": "2cfe53fc", "metadata": {}, "source": [ "### Run\n", "\n", "Run the simulation" ] }, { "cell_type": "code", "execution_count": null, "id": "fab73842", "metadata": {}, "outputs": [], "source": [ "def run_sim(\n", " n, number_density, group, images, w=None, retries=50, pos_frames=0, steps=10**6\n", "):\n", " for i in range(retries):\n", " print(\"Trying on \", i)\n", " try:\n", " np.random.seed(i)\n", " cell = symd.groups.get_cell(number_density, group, 2, n, w)\n", " md = symd.Symd(\n", " nparticles=n,\n", " cell=cell,\n", " ndims=2,\n", " images=images,\n", " force=\"lj\",\n", " wyckoffs=w,\n", " group=group,\n", " steps=steps,\n", " exeDir=\"quasi\",\n", " start_temperature=0.5,\n", " temperature=0.1,\n", " pressure=0.25,\n", " )\n", " md.remove_overlap()\n", " md.runParams[\"box_update_period\"] = 10\n", " md.runParams[\"langevin_gamma\"] = 0.5\n", " md.log_positions(frames=pos_frames)\n", " try:\n", " md.run()\n", " except RuntimeError as e:\n", " d = md.number_density()\n", " if d < 0.6:\n", " print(\"Not dense enough, retrying\", d)\n", " continue\n", "\n", " # Basically E-min\n", " md.runParams[\"start_temperature\"] = 0.1\n", " md.runParams[\"temperature\"] = 1e-2\n", " md.runParams[\"langevin_gamma\"] = 0.5\n", " md.runParams[\"Pressure\"] = None\n", " md.runParams[\"box_update_period\"] = 0\n", " md.runParams[\"steps\"] = steps // 10\n", " if pos_frames > 0:\n", " md.log_positions(filename=\"equil.xyz\", frames=pos_frames // 10)\n", " try:\n", " md.run()\n", " except RuntimeError as e:\n", " continue\n", " config = md.positions[-1]\n", " break\n", " except RuntimeError as e:\n", " print(e)\n", " md = None\n", " return md" ] }, { "cell_type": "code", "execution_count": null, "id": "5b330a5f", "metadata": {}, "outputs": [], "source": [ "md = run_sim(256, 0.1, my_group, [0, 0], pos_frames=1000, w=[1])" ] }, { "cell_type": "code", "execution_count": null, "id": "c7d84856", "metadata": {}, "outputs": [], "source": [ "plt.plot(md.positions[-1, :, 0], md.positions[-1, :, 1], \".\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.12" } }, "nbformat": 4, "nbformat_minor": 5 }